SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Mechanics of Solids (20CE0164)

Course & Branch: B.Tech (ME & AGE) Year & Sem: II & I Regulation: R20

<u>UNIT I</u> (Simple Stresses and Strains, Theories of failure)

1	a) Define stress and strain. Explain different types of stresses and strains.	L1	CO1	6M
	b) Draw and explain Stress-strain curve for a mild steel bar.	L1	CO1	6M
2	a) State Hooke's law with equation.	L1	CO1	2M
	b) A tensile test was conducted on a mild steel bar. The following data was	L3	CO1	10M
	obtained from the test:			
	(i) Diameter of the steel bar = 3 cm			
	(ii) Gauge length of the bar = 20 cm			
	(iii) Load at elastic limit = 250 KN			
	(iv) Extension at a load of 150 KN = 0.21 mm			
	(v) Maximum load = 380 KN			
	(vi) Total extension = 60 mm			
	(vii) Diameter of the rod at the failure = 2.25 cm.			
	Determine:			
	(a) The Young's modulus,			
	(b) The stress at elastic limit,			
	(c) The percentage elongation, and			
	(d) The percentage decrease in area.			
3	A brass bar, having cross-sectional area of 1000 mm ² , is subjected to axial	L3	CO1	12M
	forces as shown in figure. Find the total elongation of the bar. Take			
	$E=1.05x10^5 \text{ N/mm}^2$.			
	A B C D 50 kN 80 kN 10 kN 20 kN 1.20 m			

4	Two brass rods and one steel rod together support a load as shown in fig. If	L3	CO1	12M
	the stresses in brass and steel are not to exceed 60 N/mm^2 and 120 N/mm^2 ,			
	find the safe load that can be supported. Take E for steel = $2x105\ N/\ mm^2$ and			
	for brass = $1x10^5$ N/ mm ² . The cross-sectional area of steel rod is 1500 mm ²			
	and of each brass rod is 1000 mm ²			
	/ p			
	Brass 1000 1500 1000 mm² mm²			
	The second second			
	70 cm			
	1			
5	a) Define Bulk Modulus and Poisson's Ratio.	L1	CO1	4M
	b) A steel tube of 30 mm external diameter and 20 mm internal diameter	L3	CO1	8M
	encloses a copper rod of 15 mm diameter to which it is rigidly joined at each			
	end. If, at a temperature of 10°C there is no longitudinal stress, calculate the			
	stresses in the rod and tube when the temperature is raised to 200°C. Take E			
	for steel and copper as $2.1 \times 10^5 \text{ N/mm}^2$ and $1 \times 10^5 \text{ N/mm}^2$ respectively. The			
	value of co-efficient of linear expansion for steel and copper is given as 11 x			
	10 ⁻⁶ per °C and 18 x 10 ⁻⁶ per °C respectively.			
6	A member ABCD is subjected to point loads P ₁ , P ₂ , P ₃ and P ₄ shown in below	L2	CO1	12M
	Fig.			
	₽ C			
	P ₁ 625 mm ² P ₂ P ₃ 1250 mm ² P ₄			
	P ₁ 625 mm ² P ₂ E P ₃ 1250 mm ² P ₄			
	120 cm → 4 60 cm → 90 cm →			
	If $P_1 = 45 \text{ kN}$, $P_2 = 365 \text{ kN}$, $P_3 = 450 \text{ kN}$, $P_4 = 130 \text{ kN}$. Determine the total			
	elongation of the member. Assuming the modulus of elasticity is 2.1×10^5			
	N/mm ² .			
7	a) Explain maximum shear stress theory.	L2	CO1	6M
-	b) Explain maximum shear strain energy theory.	L2	CO1	6M
8	a) Explain maximum principal strain theory.	L2	CO1	6M
	b) Explain maximum strain energy theory.	L2	CO1	6M
	r			J2.1

9	The load on the screw consists of an axial pull of 10 kN together with the	L3	CO1	12M
	transverse shear force of 5kN. Find the diameter of the bolt required according			
	to (i) Maximum principal stress theory. (ii) Maximum principal strain theory.			
	Take Permissible tensile stress at elastic limit = 100 MPa and and Poisson's			
	ratio = 0.3 , factor of safety = 1 .			
10	Determine the diameter of a bolt which is subjected to an axial pull of 9 KN	L3	CO1	12M
	together with a transverse shear force of 4.5 KN using:			
	(i) Maximum shear stress theory. (ii) Maximum strain energy theory.			
	Given the elastic limit in tension = 225 N/mm ² , factor of safety = 3 and			
	Poisson's ratio = 0.3.			

 $\underline{\textbf{UNIT II}}$ (Shear Force and Bending Moments, Theory of Simple Bending)

1	A cantilever beam of length 3 m carries a uniformly distributed load of 1.5 kN/m	L3	CO2	12M
	run over a length of 2 m from the free end. Draw SFD and BMD for the beam.			
2	Draw the shear force and bending moment diagram for a simply supported beam	L3	CO2	12M
	of length 9m and carrying a uniformly distributed load of 10 kN/m for a distance			
	of 6 m from the left end. Also calculate the maximum bending moment in the			
	section.			
3	A cantilever beam of length 2m carries the point loads as shown in Fig. Draw	L3	CO2	12M
	the SFD and BMD for the given beam.			
	300 N 500 N 800 N B C D 0.5 m 0.7 m 0.8 m			
4	Draw the shear force and bending moment diagram for overhanging beam	L3	CO2	12M
	carrying uniformly distributed load of 2 kN/m over the entire length and a point			
	load of 2 kN as shown in Figure.			
	2 kN/m			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

Course Code: 20CE0164

5	A simply supported beam oflength10m carries the UDL and two-point loads as	L3	CO2	12M
	shown in fig. Draw S.F. and B.M. diagram for the beam shown in figure. Also			
	calculate the maximum bending moment.			
	A C 10 kN/m 10 kN/m 10 kN B B A 10 m A 10 m B R B			
6	a) Derive the simple bending equation.	L2	CO3	8M
	b) State the assumptions made in the theory of simple bending.	L2	CO3	4M
7	A square beam 20 mm x 20 mm in section and 2 m long is supported at the ends.	L3	CO3	12M
	The beam fails when a point load of 400 N is applied at the centre of the beam.			
	What uniformly distributed load per metre length will break a cantilever of the			
	same material 40 mm wide, 60 mm deep and 3 m long?			
8	a) Derive section modulus for rectangular section.	L2	CO3	4M
	b) A beam 500 mm deep of a symmetrical section has $I = 1 \times 10^8 \text{ mm}^4$ and is	L3	CO3	8M
	simply supported over a span of 10 m. Calculate:			
	(i) The uniformly distributed load it may carry if the maximum bending			
	stress is not to exceed150 N/mm ² .			
	(ii) The bending stress if the beam carries a central point load of 25 kN.			
9	A cast iron beam is of T-section as shown in figure. The beam is simply	L3	CO3	12M
	supported on a span of 8m. The beam carries a UDL of 1.5kN/m length on the			
	entire span. Determine the maximum tensile and compressive stresses.			
10	A cast iron beam is of I-section as shown in figure. The beam is simply supported	L3	CO3	12M
	on a span of 5 m. If the tensile stress is not to exceed 20 N/mm ² , find the safe			
	uniform load which the beam can carry. Find also the maximum compressive			
	stress.			

 $\underline{\textbf{UNIT III}}$ (Shear Stress Distribution, Torsion of Circular Shafts and Springs)

1	Derive shear stress distribution formula for rectangular section with a neat	L1	CO3	12M
	sketch.			
2	A timber beam of rectangular section is simply supported at the ends and carries	L3	CO3	12M
	a point load at the centre of the beam. The maximum bending stress is 12 N/mm ²			
	and maximum shearing stress is 1 N/mm ² , find the ratio of the span to the depth.			
3	a) Draw the shear stress distribution across:	L2	CO3	6M
	(i) Rectangular section.			
	(ii) Triangular section.			
	(iii) Circular section.			
	(iv) I & T Sections			
	b) An I-section beam 350 mm x 150 mm has a web thickness of 10 mm and a	L3	CO3	6M
	flange thickness of 20 mm. If the shear force acting on the section is 40 KN, find			
	the maximum shear stress developed in the I-section.			
	150 mm 20 mm N A 20 mm			
4	Derive shear stress distribution formula for circular section with a neat sketch.	L1	CO3	12M

5	The shear force acting on a section of a beam is 50 KN. The section of the beam	L3	CO3	12M
	is of T-shaped of dimensions 100 mm x 100 mm x 20 mm as shown in figure.			
	The moment of inertia about the horizontal neutral axis is $314.221 \times 10^4 \text{ mm}^4$.			
	Calculate the shear stress at the neutral axis and at the junction of the web and			
	the flange.			
	100 mm 100 mm 20 mm 20 mm 20 mm			
6	Derive pure torsion equation for a circular shaft with assumptions.	L2	CO3	12M
7	a) State the difference between twisting moment and bending moment.	L1	CO3	4M
	b) A solid steel shaft has to transmit 75 KW at 200 rpm. Taking allowable shear	L3	CO3	8M
	stress as 70 N/mm ² , find suitable diameter for the shaft, if the maximum torque			
	transmitted at each revolution exceeds the mean by 30%.			
8	The stiffness of a close-coiled helical spring is 1.5 N/mm of compression under	L3	CO3	12M
	a maximum load of 60 N. The maximum shearing stress produced in the wire of			
	the spring is 125 N/mm ² . The solid length of the spring (when the coils are			
	touching) is given as 5 cm.			
	Find: (i) The diameter of wire, (ii) Mean diameter of the coils and			
	(iii) Number of coils required. Take $C = 4.5 \times 10^4 \text{ N/mm}^2$.			
9	A hollow shaft, having an inside diameter 60% of its outer diameter, is to replace	L3	CO3	12M
	a solid shaft transmitting the same power at the same speed. Calculate the			
	percentage saving in material, if the material to be used is also the same.			
10	A closely coiled helical spring made of 10 mm diameter steel wire has 15 coils	L3	CO3	12M
	of 100 mm mean diameter. The spring is subjected to an axial load of 100 N.			
	Calculate: (i) The maximum shear stress induced, (ii) The deflection, and			
	(iii) Stiffness of the spring.			
	Take modulus of rigidity, $C = 8.16 \times 10^4 \text{ N/mm}^2$			

<u>UNIT IV</u> (Deflection of Beams and Columns)

1	Derive the relation between slope, deflection and radius of curvature.	L2	CO4	12M
2	A beam of uniform rectangular section 200 mm wide and 300 mm deep is	L3	CO4	12M
	simply supported at its ends. It carries a uniformly distributed load of 9	23		121/1
	KN/m run over the entire span of 5 m. If the value of E for the beam material			
	is 1 x 10 ⁴ N/mm ² , find:			
	(i) The slope at the supports and (ii) Maximum deflection.			
3	Determine: (i) slope at the left support, (ii) deflection under the load and (iii)	L3	CO4	12M
	maximum deflection of a simply supported beam of length 5 m, which is			
	carrying a point load of 5 KN at a distance of 3 m from the left end. Take E			
	$= 2 \times 10^5 \text{ N/mm}^2 \text{ and I} = 1 \times 10^8 \text{ mm}^4.$			
4	A cantilever of length 3 in carries two-point loads of 2 KN at the free end	L3	CO4	12M
	and 4 KN at a distance of 1 m from the free end. Find the deflection at the			
	free end. Take $E = 2 \times 10^5 \text{N/mm}^2$ and $I = 10^8 \text{ mm}^4$			
	- 4 kN 2 kN			
	c L B			
	7A			
	3 m			
5	A horizontal beam AB is simply supported at A and B, 6 m apart. The beam	L3	CO4	12M
	is subjected to a clockwise couple of 300 KN-m at a distance of 4 m from			
	the left end as shown in figure below If $E = 2 \times 10^5 \text{N/mm}^2$ and $I = 2 \times 10^8$			
	mm ⁴ , determine:			
	(i) Deflection at the point where couple is acting and			
	(ii) The maximum deflection.			
	A C B			
	300 kNm			
	6 m - R _B			
	H _A		005	43.4
6	a) Write the assumptions made in the Euler's column theory.	L2	CO5	4M
	b) Write the end conditions for long columns and state the difference	L2	CO5	8M
	between long columns and short columns.	1.0	007	103.4
7	Derive an expression for crippling load when both ends of the column are	L2	CO5	12M
	hinged.			

8	A solid round bar 3 m long and 5 cm in diameter is used as a strut with both	L3	CO5	12M
	ends hinged. (Take $E = 2.0 \times 10^5 \text{ N/mm}^2$). Determine the crippling load,			
	when the given strut is used with the following conditions:			
	(i) One end of the strut is fixed and the other end is free			
	(ii) Both the ends of strut are fixed			
	(iii) One end is fixed and other is hinged.			
9	A column of timber section 15 cm x 20 cm is 6 metre long both ends being	L3	CO5	12M
	fixed. If the Young's modulus for timber =17.5 KN/mm ² , determine:			
	(i) Crippling load and			
	(ii) Safe load for the column if factor of safety = 3.			
10	Using Euler's formula, calculate the critical stresses for a series of struts	L3	CO5	12M
	having slenderness ratio of 40, 80, 120, 160 and 200 under the following			
	conditions:			
	(i) Both ends hinged and			
	(ii) Both ends fixed. Take $E = 2.05 \times 10^5 \text{ N/ mm}^2$			

 $\underline{\text{UNIT V}}$ (Thin Cylinders and Thick Cylinders)

1	a) Derive expression for circumferential stress in thin cylinder.	L2	CO6	6M
	b) A cylindrical pipe of diameter 1.5m and thickness 1.5cm is subjected to	L3	CO6	6M
	an internal fluid pressure of 1.2 N/mm ² . Determine:			
	(i) Longitudinal stress developed in the pipe, and			
	ii) Circumferential stress developed in the pipe.			
2	A cylindrical thin drum 80cm in diameter and 3m long has a shell thickness	L3	CO6	12M
	of 1cm. If the drum is subjected to an internal pressure of 2.5 N/mm ² , Take			
	E= 2x 10 ⁵ N/mm ² and Poisson's ratio 0.25			
	Determine			
	(i) change in diameter (ii) change in length and (iii) Change in volume.			
3	A cylindrical shell 100mm long 200mm internal diameter having thickness	L3	CO6	12M
	of a metal as 10mm is filled with a fluid at atmospheric pressure. If an			
	additional 200mm ³ pumped into the cylinder, Take $E = 2 \times 10^{5} \text{ N/ mm}^2$ and			
	Poisson's ratio is 0.3. Find			
	(i) The pressure exerted by the fluid on the cylinder and			
	(ii) The hoop stress induced.			
4	A copper cylinder, 90 cm long, 40 cm external diameter and wall thickness	L3	CO6	12M
	6 mm has its both ends closed by rigid blank flanges. It is initially full of oil			
	at atmospheric pressure. Calculate additional volume of oil which must be			
	pumped into it in order to raise the oil pressure to 5 N/mm ² above			
	atmospheric pressure. For copper assume E= 1.0 x 10 ⁵ N/mm ² and Poisson's			
	ratio 1/3. Take bulk modulus of oil as $K = 2.6 \times 10^3 N/mm^2$.			
5	A closed cylindrical vessel made of steel plates 4 mm thick with plane and,	L3	CO6	12M
	carries fluid under a pressure of 3 N/ mm ² . The dia. of cylinder is 30 cm and			
	length is 80 cm, calculate the longitudinal and hoop stresses in the cylinder			
	wall and determine the change in diameter, length and volume of the			
	cylinder. Take E = $2 \times 10^{5} \text{ N/ mm}^2$ and Poisson's ratio is 0.286			
6	a) A cylinder of thickness 1.5cm has to withstand maximum internal	L3	CO6	6M
	pressure of 1.5N/mm ² . If the ultimate tensile stress in the material of the			
	cylinder is 300N/mm ² , factor of safety 3.0 and joint efficiency 80%,			
	determine the diameter of the cylinder.			
L	l			

	b) A spherical shell of internal diameter 0.9m and of thickness 10mm is	L3	CO6	6M
	subjected to an internal pressure of 1.4 N/mm ² . Determine the increase in			
	diameter and increase in volume. Take $E=2X10^5$ N/mm ² and $\mu=1/3$.			
7	Derive an expression for hoop and radial stresses across thickness of the	L2	CO6	12M
	thick cylinder.			
8	Determine the maximum and minimum hoop stress across the section of a	L3	CO6	12M
	pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains			
	a fluid at a pressure of 8 N/mm ² . Also sketch the radial pressure and hoop			
	stress distribution across the section.			
9	A compound cylinder is made by shrinking a cylinder of external diameter	L3	CO6	12M
	300 mm and internal diameter of 250 mm over another cylinder of external			
	diameter 250 mm and internal diameter 200 mm. The radial pressure at the			
	junction after shrinking is 8 N/mm ² . Find the final stresses set up across the			
	section, when the compound cylinder is subjected to an internal fluid			
	pressure of 84.5 N/mm ² .			
10	A steel cylinder of 300 mm external diameter is to be shrunk to another steel	L3	CO6	12M
	cylinder of 150 mm internal diameter. After shrinking, the diameter at the			
	junction is 250 mm and radial pressure at the common junction is 28			
	N/mm^2 . Find the original difference in radii at the junction. Take $E=2~x$			
	10^5 N/mm^2 .			

PREPARED BY: Mrs. A Asha, Mr. S Venkataraman